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Abstract. Induction motor bearing fault diagnosis
stands as a crucial aspect of rotating machinery main-
tenance. Numerous studies have delved into employ-
ing current signals and machine learning methods for
this purpose. However, the effectiveness of these ap-
proaches relied heavily on manually selecting features
for training. Moreover, traditional machine learning
techniques struggle with large volumes of computational
data. To address these limitations, researchers have
turned to deep learning architectures such as Convo-
lutional Neural Networks, ResNet, and AlexNet, either
individually or in combination with traditional machine
learning methods, for bearing fault diagnosis. Pub-
lished convolutional neural network-based works usu-
ally use basic CNN networks. The experimental data
are time or frequency domain data, and the fault clas-
sification accuracy is high only with noise-free signals.
This paper proposes a novel approach aimed to enhance
the accuracy of bearing fault identification by leverag-
ing a CNN model trained on both the estimated motor
current signals and their corresponding Fast Fourier
Transform values. Comparative analysis against ex-
isting methodologies including machine learning and
single-input convolutional neural networks or multi-
input convolutional neural networks demonstrates that
the proposed method achieves impressive results. The

bearing fault accuracy reaches up to 99.88% for noise-
free signals and 99.14% for signals with added noise at
a Signal-to-Noise Ratio of -10 dB.
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1. Introduction

In today’s manufacturing sector, electric motors and
all kinds of rotating electric devices are of significant
importance. Consequently, techniques for identifying
and evaluating faults have been developed to enhance
the dependability and availability of these systems [1].
Bearing malfunctions account for forty percent of mo-
tor failures [2], highlighting the significance of identi-
fying issues with bearings for supervising the condi-
tion of rotary machines. Currently, there are multiple
methods to monitor and diagnose motor bearing faults,
such as analyzing of vibration signals [3], monitoring
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acoustic signals [3], supervising electromagnetic fields
[4], and analyzing the motor current signal (MCSA)
[5]. Among these techniques, MCSA shows promise
for diagnosing faults in induction motors. The need
for additional sensors is eliminated by current signal-
based monitoring, unlike traditional sensor-based mon-
itoring methods that require accelerometers mounted
on the tested motor for vibration-based monitoring. As
a result, current-based motor fault monitoring systems
have simpler designs and are easier to implement.

The crucial steps in diagnosing bearing failures us-
ing vibration or current data involve feature extraction
and fault classification. Common techniques for feature
extraction from the signals include Fast Fourier Trans-
form (FFT) [6], Discrete Wavelet Transform (DWT)
[6], Empirical Mode Decomposition (EMD) [7]. Several
typical machine learning algorithms such as Support
vector machines (SVM) [8], backpropagation (BP) neu-
ral networks [9], and k-Nearest Neighbor (k-NN) [10]
are used for the bearing fault classification. Nonethe-
less, these methods demand significant expertise in fea-
ture extraction and data preprocessing. Additionally,
selecting the optimal features from a dynamic environ-
ment poses a challenge. For example, extracted fea-
tures may fail to effectively represent faults if the fault
signal is exceedingly weak. Consequently, fault diag-
nosis would be challenging, especially given the variety
of working environments [11].

One advantage of deep learning compared with tra-
ditional machine learning techniques, such as SVM,
KNN, and RF lies in its ability to automatically ex-
tract features without human intervention and to clas-
sify data using nonlinear activation functions at each
layer. Convolutional Neural Networks (CNN) repre-
sent a typical type of deep neural network with nu-
merous advantages in facial recognition or image pro-
cessing. In recent years, researchers have explored the
application of CNNs in processing bearing fault sig-
nals. Hoang and Kang [12] delved into deep learning
techniques alongside information fusion methodologies
for the diagnosis of bearing faults. Their methodology
involved utilizing samples from two phases of motor
current signals as inputs for two distinct CNNs. Sub-
sequently, they proposed a model combining a convolu-
tional neural network with SVM, k-NN, and multi-layer
perceptron architectures, culminating in a commend-
able maximum diagnostic accuracy of 98.30% under
noise-free conditions. Wang et al. [13] applied wavelet-
based filtering technique to denoise two-phase current
signals before employing a CNN-SVM hybrid model
for fault bearing diagnosis, resulting in an impressive
accuracy rate of 99.01%. Ma et al. [14] from Foshan
University, China, proposed a fault diagnosis method
for motor bearings based on current Bi-Spectrum and
CNN, obtaining a diagnostic accuracy of 80%.

Within the context of our survey, published stud-
ies on bearing fault diagnosis utilize CNN networks to
examine motor current signals either in the time do-
main [12, 13], or frequency domain [14]. These both
studies did not employed the combination of signals
in time and frequency domains. When representing
the motor current signal in the time domain, only the
fault occurrence time is known, but it exhibits negligi-
ble variation [15]. Therefore, when affected by noise,
it is difficult to accurately diagnose the bearing fault
based on the features only in the time domain. In addi-
tion, according to [16], the bearing fault leads to signif-
icant changes in the stator current spectrum, and this
spectrum can be used for fault diagnosis purposes. For
this reason, signal analysis in both the time and fre-
quency domains is necessary to enhance the accuracy
of bearing fault diagnosis. It is necessary to design a
2-input CNN network with the signal as the time do-
main and the spectrum of the signal to simultaneously
extract the features of the signal in both domains, or
use two independent CNN networks, each used to ex-
tract the signal in one domain and then merge them
to analyze the inter-domain signal [12]. Nevertheless,
the fault classification accuracy when experimenting
with the IF-CNN model in [12] using raw signals and
their spectral portrait as inputs is lower than when ex-
perimenting with the model using pre-processed input
data. However, because the author uses the output of
the last layer of CNN to combine information from two
CNNs, based on the information in this last layer, the
model already knows the exact classification probabil-
ity of the test data on each domain, so the essence is
still extracting information from two independent do-
mains. The problem of analyzing inter-domain signals
has not been completely solved. Additionally, these
studies have not explored how adding noise to signals
with varying levels impacts diagnostic accuracy. Con-
sequently, these methods are only applicable to lab-
oratory data. In practical situations where fault sig-
nals are masked by background noise, existing methods
might diminish their efficacy.

This work proposes a new solution for bearing fault
diagnosis using an MI-CNN, which involves utilizing
estimated current signals and their spectral portrait
after FFT transformation. Initially, motor current sig-
nals are estimated employing a Kalman Filter. Subse-
quently, both the estimated current signals correspond-
ing to various fault conditions of motor bearings and
their FFT signals are simultaneously extracted using
the proposed MI-CNN. In order to identify different
types of bearing faults, the extracted features are com-
bined through a combined block during the fusion stage
and then classified via a softmax classifier. The exper-
iments are carried out on both types of noise-free sig-
nals and the signals with added noise at varying levels.
Furthermore, the parameters of the proposed MI-CNN
model are optimized to improve the accuracy of the
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proposed method based on the test results of fault clas-
sification accuracy for different values of model param-
eters. Moreover, experiment results are compared with
existing techniques on the same datasets to demon-
strate the robustness of the proposed method.

This work provides the main contributions as follows:

• Proposing a novel approach that enhances fault
diagnosis efficiency by integrating both estimated
motor current signals and their FFT counterparts
with deep learning techniques.

• Employing a MI-CNN architecture to compare the
effectiveness of the proposed method against pub-
lished approaches.

• Validating the effectiveness of the proposed
method through a series of experiments involving
both noise-added and noise-free signals.

The remainder of this paper is organized as follows.
Section 2 presents the proposed algorithm for the mo-
tor bearing fault diagnosis. In Section 3, the experi-
ment dataset and method will be discussed in detail.
Then, Section 4 provides the results and discussions of
the proposed algorithm. Finally, Section 5 concludes
the paper.

2. Proposed method

Fig. 1 demonstrates the proposed method to diagnose
bearing failures. According to Fig. 1, the depicted
approach encompasses four main phases: data collec-
tion, feature extraction, fusion phase, and classification
phases. Within the data collection phase, two princi-
pal tasks are undertaken: estimating current signals
from the dataset, referred to as signals in the time do-
main, and conducting FFT on the estimated signals,
termed signals in the frequency domain. These sig-
nals are then structured as grayscale images and in-
putted into the innovative CNN. Feature extraction is
concurrently performed on both the time domain and
frequency domain signals using 5 CNRM blocks along
with a pair of Fully Connected and ReLU layers. All
features are extracted from the estimated current sig-
nal and their FFTs are fed into the feature fusion stage
to improve fault classification reliability. In the classifi-
cation phase, a softmax layer receives the fused features
and employs them to categorize the bearing-fault sig-
nals. The detailed parameters in each layer are listed
in Table 12. Subsections 2.1 to 2.3 will detail the steps
in the proposed method.

Fig. 1: Overall diagram of proposed approach for bearing fault
detection.

2.1. Motor current signal estimation
based on Kalman filter

The state space equation of the system in signal space
is defined as follows:

xn+1 = Fnxn +wn, zn = Hnxn + vn (1)

where Fn is the status transformation matrix, its size
is (nx × nx); Hn is the measuring matrix, its size is
(nz × nx); n is the discrete-time index; xn represents
the status vector of bearings, its size is (nx × 1), which
means xn is a vector containing elements of 0, 1, or
2 if the bearing has no fault, outer race faults, or in-
ner race faults, respectively; the supervision vector is
denoted by zn, comprises chosen current signals from
the dataset, with a size of (nz × 1); wn is process in-
terference vector, its size is (nx × 1); vn is measuring
interference vector, its size is (nz × 1).
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Fig. 2: The stages of current signal estimation based on Kalman filter (I is the unit matrix).

Equations (2) and (3) provide the covariance matri-
ces of the wn and vn vectors.
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where T denotes the matrix transpose, E [.] denotes the
expectation function, Qn is the process noise covari-
ance, Rn is the measurement noise covariance. Mea-
suring interference vn can include intrinsic interference
sources such as defects in the manufacture and installa-
tion of bearings, roller, and drive shaft. In reality, the
noise sources do not reflect the occurrence of bearing
failures. Consequently, vn in Eq. (1) mainly describes
the internal noise sources, which exist only during the
operation of the rotating machinery.

Next, a linear Kalman filter [17, 18] is utilized for
the system model in Eq. (1) for status estimation.
The condition estimate graph is depicted in Fig. 2.
Kalman gain K is calculated as the first step in pro-
cessing an estimate utilizing the Rn and the related
error covariance P−

n provided by Eq. (4).

P−
n = E

[
e−n e

−T
n

]
, ēn = xn − x̂−

n (4)

Where, x̂−
n shows the predicted state, e−n shows the

prediction error. Next, the status assessment x̂n is up-
dated by using the Kalman gain K and the observation
zn; then we can calculate the error covariance P̂n de-
fined as follows:

Pn = E
[
ene

T
n

]
, en = xn − x̂n (5)

Where, en is the error of the assessment.

The stages of current signal estimation based on the
Kalman filter as shown in Fig. 2 can be described as
follows: Firstly, an estimation of xn−1 (indicated x̂n−1)
and the covariance of that estimation (indicated pn−1)
for current signal at time n-1 are determined. Subse-
quently, an estimation of xn (indicated x̂−

n ) and the
covariance of that prediction (indicated P−

n ) at time n

are calculated based on x̂n−1 and pn−1. Then sample
update is implemented at time n to correct its predic-
tion of xn. The resulting estimation of xn is signified
x̂n and the covariance of that estimation is signified
Pn. Initializing the values x̂−

0 ,P
−
0 is fundamental step

of the status assessment process. These values could
be defined by Eq. (6):

x̂−
0 ≈ ẑ = 1

N

−1∑
j=N

zj ;

P−
0 = E[e−0 e

−T
0 ] = R0 ≈ 1

N

−1∑
j=N

(zj − z̄)(zj − z̄)T

(6)
Where z′js, j = −N,−N + 1, . . . ,−1 are N previous
measurements and e−0 = x0 − x̂−

0 is the initial assess-
ment error and R0 is its covariance matrix.

This estimation is performed frame by frame for
all data points that are the results of the motor cur-
rent signal measurements corresponding to the differ-
ent bearing states and the estimation process reiter-
ates with the whole input data. Subsequently, the es-
timated motor current signal is transformed from the
time domain to the frequency domain using the FFT
technique.

2.2. Fast Fourier Transform of the
estimated motor current signal

The purpose of transforming the estimated signal into
the frequency domain before inputting it into the CNN
network is to enable the CNN to discern features across
both time and frequency domains, unlike prior meth-
ods that focused solely on either the time or frequency
domain [12, 13] and [14].

2.3. Construct the proposed
MI-CNN for bearing fault
diagnosis

A normal CNN includes the input layer, convolutional
layer, pooling layer, fully connected layer, and output
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layer. More details about Convolutional Neural Net-
works can be found in [19]. Applying the fundamental
concepts of the basic CNN, in this work, a modified
structure CNN, called MI-CNN for fault diagnosis in
bearings using motor current signals is proposed with
the details as follows.

The data collection and feature extraction stages
consist of two branches: the left and right branches,
which are used to collect and extract features using
signals from ECSs and their FFT, respectively. Two
branches have an identical structure. Data points from
ECSs and their FFT are first converted into gray im-
ages of dimensions L1 x L2. These images are fed to the
two inputs of the MI-CNN network, each branch of this
network comprises five CNRM blocks and a fully con-
nected block (FC1). The first four CNRM blocks share
the same structure consisting of a convolutional layer, a
normalization layer, a nonlinear activation layer, and a
pooling layer. The fifth CNRM block includes a convo-
lutional layer, a normalization layer, and a nonlinear
activation layer. Padding is applied at the convolu-
tional layers, with a stride of 1 x 1 after each multipli-
cation, ensuring that no information is lost and that
the image dimensions remain unchanged. The output
from the first fully connected layer (FC1) is then fed
into the feature fusion block, where extracted features
from ECSs and their FFT of the current signals are
combined, allowing the improved CNN network to fur-
ther refine the feature extraction process. The number
of neurons in the feature fusion block corresponds to
the combined neurons of FC1 of each branch. As a
result, the proposed MI-CNN network is capable of si-
multaneously extracting features from both the time
and frequency domains of the current signal.

The feature classification stage consists of two pairs
of ReLU and fully connected layers, followed by a Soft-
max layer and an output layer. The FC2 layer in the
MI-CNN network contains 200 neurons, followed by the
second fully connected layer (FC3) with 100 neurons
and the output layer with 3 neurons. These neurons
correspond to the bearing condition labels: 0, 1 and
2, representing a healthy bearing, a bearing with inner
ring damage and a bearing with outer ring damage,
respectively. This stage classifies the input image into
one of three categories, labeled 0, 1 or 2, corresponding
to different bearing fault conditions, based on the prob-
abilities calculated by the Softmax layer. Subsequently,
experiments are conducted on datasets outlined in Sub-
section 3.1 with different values of model parameters
such as the number and the size of input data sam-
ples, the number and the size of kernel to suggest the
optimal parameters of the proposed CNN. Finally, the
accuracy of the proposed CNN is compared with that
of other methods on identical datasets to validate the
effectiveness of the proposed approach.

The next section of the paper will present the dataset
for experimental verification of the suggested MI-CNN
effectiveness, the scenario and experimental method.

3. Experiments

3.1. Experimental dataset

In order to validate the accuracy of proposed solu-
tion for bearing fault diagnosis, we utilize the dataset
which is provided by Paderborn University [20]. This
is a laboratory-measured dataset and has been used
by many research groups to test the proposed bearing
fault diagnosis solution ([12, 13, 14], and [15]). This
dataset comprises 20 measurements over 4 seconds of
various motor parameters such as the radial force (F),
the torque (M), the speed (S), the vibration signal,
the oil temperature of the bearing module, the phase-
1 of the current signal (PH1), and the phase-2 of the
current signal (PH2) across 32 different bearing codes
of type 6203, encompassing 6 codes for healthy bear-
ings (K001-K006), 12 for outer-race-faulty bearings
(KA01, KA03-KA09, KA15, KA16, KA22, KA30), 11
for inner-race-faulty bearings (KI01, KI03-KI05, KI07,
KI08, KI14, KI16-KI18, KI21), and 3 for bearings with
both inner-race and outer-race faults (KB23, KB24,
KB27). The motor (1) is a 425 W permanent magnet
synchronous motor (PMSM) with a rated torque of T
= 1.35 Nm, a rated rotor shaft speed of n = 3000 rpm,
a rated current of I = 2.3 A and the number of pole
pairs of p = 4. It is operated by a frequency converter
(KEB Combivert 07F5E 1D-2B0A) with a cut-off fre-
quency of 16 kHz. This motor has 4 working conditions
corresponding to different values of rotor shaft rotation
speed (S), load torque (M), radial force acting on bear-
ings (F). In this article, we utilized the PH1 of fifteen
bearing codes in Table 1 with working condition B of
the motor in Table 2 to do experiment.

3.2. Experimental method

The data points of phase-1 of the motor current signals
with labels K0, KA and KI in Table 2 are arranged into
data frames of L1 x L2 size. Each of these frames cor-
responds to an image of size L1 x L2 pixels. Therefore,
the number of images corresponding to the labels K0,
KA, and KI in Table 1 is 25.600.000/(L1 x L2) images.
The allocation of input images to the MI-CNN network
is performed randomly as follows: 80% of the images
are assigned for training and the remaining 20% are
reserved for testing and evaluation. The parameters of
the MI-CNN network for the experiment are listed in
Table 3.
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Tab. 1: Bearing codes for effectiveness verification.

Condition of Class Label Bearing Number of Duration for a Sampling
bearings codes for measurements/ measurement frequency

experiment bearing code
No fault (N) 0 KO 01, 02, 03, 20 4 seconds 64 kHz

04, 05
Outer-race 1 KA 04, 15, 16, 20 4 seconds 64 kHz
fault (O) 22, 30
Inner-race 2 KI 04, 14, 16, 20 4 seconds 64 kHz
fault (I) 18, 21

Tab. 2: Engine working conditions.

Working S (RPM) M (Nm) F (N)
condition

A 1500 0.1 1000
B 900 0.7 1000
C 1500 0.7 400
D 1500 0.7 1000

Tab. 3: Parameters of the proposed MI-CNN.

Parameter Value
Input image size L1 × L2
Minibatch Size 128

InitialLearnRate α
LearnRateDropFactor 0.1

ValidationPatience 5
L2Regularization 1e-10

Epoch 10
The number of kernels/the kernel size K/F

per convolutional layers
Optimizer Adam

The mini-batch size is chosen to be 128. If the
value of the mini-batch size is too small, the number
of iterations will increase, leading to the state of the
model gradually moving from underfitting to optimal
and then overfitting. On the contrary, if the mini-batch
size is too large, more buffers memory is needed to store
the training data. Furthermore, to verify the effective-
ness and reliability of the model, Gaussian noise was
added to the signals used for testing. In this study, the
proposed method is tested by changing the coefficients
L1, L2, α, K, F on signals with different signal-to-noise
ratios from -10 dB to 20 dB with a step of 5 dB to select
the optimal parameter set for the model. The selection
is based on the criteria of fault classification accuracy
and execution time. It is worth noting that the purpose
of selecting the optimal parameter set during the fine-
tuning phase is to establish a configuration that ensures
fast execution time while enhancing fault classification
accuracy for real-time applications. After selecting the
optimal parameter set, we compare the electric motor
bearing fault classification accuracy of the proposed so-

lution using the proposed MI-CNN model with several
different methods implemented using the current sig-
nal and CNN including a deep learning and information
fusion method [12], combined method using wavelet fil-
ter, CNN and SVM [13], the Bi-Spectrum method [14]
using the same dataset, executed on the same hardware
platform (Intel (R) Core i7 2.9 GHz CPU; 8 GB RAM)
using MATLAB software to highlight the effectiveness
of the proposed method.

4. Results and discussion

4.1. The accuracy of bearing fault
diagnosis across varied initial
Learning Rate

In this experiment, we selected the proposed MI-CNN
model with a random set of values: L1 x L2 (80 x 80), K
(5), F (3 x 3) and varied the learning rate (0.001, 0.01,
and 0.1). The dataset used for the experiment corre-
sponds to working condition B in Table 2. The value
of the learning rate will directly affect the convergence
speed of the loss function to the global extreme point.

Fig. 3 and Table 4 show the classification accuracy
of motor bearing faults of proposed CNN model with
different initial learning rate. According to Fig. 3,
with a large initial learning rate for example 0.1, the
classification accuracy is low, especially for signals with
small SNR. Whereas a high classification accuracy is
achieved even with signals with small value of SNR
(such as -10 dB), if we use small initial learning rates
such as 0.01 or 0.001.

To mitigate the overfitting problem, we applied L2
regularization during training with a penalty factor of
0.00001. Additionally, we augmented the dataset by
adding noise with signal-to-noise ratios (SNR) ranging
from -10 dB to 20 dB. This approach increased the
dataset’s diversity and further reduced overfitting. As
shown in Fig. 4, the validation loss and validation ac-
curacy closely align with the training loss and training
accuracy, indicating that overfitting has been signifi-
cantly reduced.
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Tab. 4: Fault classification accuracy with different initial learning rates.

The initial The fault classification accuracy (%) with the noise-
learning adding signal at the different SNR

rates 20 dB 15 dB 10 dB 5 dB 0 dB -5 dB -10 dB
0.1 76.67 75.17 72.62 63.21 53.25 40.79 38.96
0.01 98.62 98.45 98.12 97.82 97.56 97.00 96.12
0.001 99.76 99.73 99.71 99.58 99.54 99.46 99.14

Tab. 5: Fault classification accuracy with varying input image sizes.

Input Fault classification accuracy (%) with noise-adding
image signal at different SNR values
size 20 dB 15 dB 10 dB 5 dB 0 dB -5 dB -10 dB

40 × 40 98.55 98.35 98.34 96.16 95.13 91.28 88.55
60 × 60 92.43 83.47 83.24 68.70 67.10 66.10 65.82
80 × 80 99.76 99.73 99.71 99.58 99.54 99.46 99.14

100 × 100 99.28 93.31 90.80 86.54 85.14 81.96 76.95

Fig. 3: Performance of proposed CNN model with different ini-
tial learning rate.

4.2. The accuracy of bearing fault
diagnosis across varied size of
input data image

In this part, we selected the MI-CNN model with F =
3 x 3, K = 5, α= 0.001 and varying the L1 x L2 values
of 40 x 40, 60 x 60, 80 x 80, and 100 x 100 to evaluate
the classification accuracy. The mini-batch size and
the epoch are chosen as in Table 3. The dataset used
for the experiment corresponds to working condition
B in Table 2. The fault classification accuracy curves
corresponding to different input data image sizes are
shown in Fig. 5. The fault classification accuracy and
the classification time for one image and the number
of learnable parameters of this CNN model with differ-
ent input data image sizes are depicted in Table 5 and
Table 6, respectively. From Fig. 5, it can be seen that
input images sized at 40 x 40, 60 x 60, or 100 x 100 ex-
hibit lower classification accuracy compared with those

Fig. 4: Loss and accuracy in training process of the MI-CNN
model with initial learning rate α= 0.001.

with dimensions 80 x 80. This is because the process
of estimating and extracting the spectrum of the mo-
tor current signal is performed on frames of 6400 data
points. Therefore, when arranging these frames into
images of size 80 x 80 (6400 data points) to input into
the MI-CNN model, there is no residual, meaning the
fault information is fully contained in a single input im-
age. However, when using input images with sizes of 40
x 40 (1600 data points), 60 x 60 (3600 data points), or
100 x 100 (10000 data points), arranging the frames of
6400 data points into these images results in the fault
information being spread across multiple images.

According to Table 5, it is clear that a larger number
of learnable parameters results in longer classification
times for data images. Fig. 5 and Table 6 reveal that
the model utilizing 40 x 40 input data images exhibit
a relatively short prediction time (1.090 ms ± 10%),
and its classification accuracy is inferior to that of the
model employing 80 x 80 input data image. Conversely,
the model utilizing 100 x 100 input data images not
only demonstrate reduced classification accuracy (par-
ticularly for signals with low SNRs) but also incurs
a longer execution time (5.814 ms ± 10%) compared
with other input data image sizes. Although the model
employing 60 x 60 input data images yield a shorter
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Tab. 6: Time for prediction a data image, the number of learnable parameters for the proposed model with different sizes of input
data image.

Size of input Number of data images Time for prediction a The number of learnable
image need to specify data image (ms) parameters
40 × 40 9600 1.090 ± 10% 50843
60 × 60 4267 2.035 ± 10% 60843
80 × 80 2400 3.430 ± 10% 92843

100 × 100 1536 5.814 ± 10% 114843

Fig. 5: Classification accuracy curves of proposed algorithm
with different size of input data image.

prediction time than the one with 80 x 80 input data
images (2.034 ms ± 10% compared with 3.430 ms ±
10%), the former achieves lower classification accuracy
than the latter. Based on the aforementioned analysis,
a model with an input data image size of 80 x 80 is
chosen to strike a balance between failure classification
accuracy and execution time.

4.3. The accuracy of bearing fault
diagnosis across varied number
of kernels

In this experiment, we selected the proposed MI-CNN
model with a random set of values: L1 x L2 (80 x 80),
F (5 x 5), α(0.001) and varied the K values of 1, 5,
10, 20, and 30. The dataset used for the experiment
corresponds to working condition B in Table 2 with
added Gaussian noise at different SNR values. Fig.
6 illustrates the classification accuracy of motor bear-
ing faults for five different kernel quantities per con-
volutional layer using the proposed MI-CNN model.
The results of bearing fault classification accuracy, the
time taken to classify a single image and the number of
learnable parameters of the proposed model with vary-
ing kernel quantities are presented in Tables 7 and 8,
respectively.

Fig. 6: Classification accuracy curves of proposed algorithm
with different number of kernels.

On one hand, increasing the number of kernels in
each convolution layer tends to enhance classification
accuracy by enabling the network to deeply learn sig-
nal features. For signals with large SNR (such as 10,
15, 20 dB), adjusting the kernel number has negligible
impact on classification accuracy. Conversely, for sig-
nals with low SNR (such as -10 dB), there is a slight
effect on accuracy, shifting from 99.10% with one ker-
nel to 99.54% with thirty kernels. On the other hand,
augmenting kernel numbers substantially escalates the
total learnable parameters of the CNN model, soaring
from 50923 with one kernel to 407043 with thirty ker-
nels. As a result, the prediction time for image data
of CNN models also increases from 3.339 ms ± 10%
to 6.336 ms ± 10%. This analysis suggests that while
increasing filter numbers in the proposed CNN model
does not significantly bolster fault classification accu-
racy, it markedly elongates execution time. Therefore,
for the CNN model in this study, a kernel number of
5 is chosen to strike a balance between accuracy and
real-time responsiveness.

4.4. The accuracy of bearing fault
diagnosis across varied size of
kernels

In this experiment, we utilize L1 x L2 (80 x 80), K
(5), α (0.001), the mini-batch size and the epoch are
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Tab. 7: Fault classification accuracy with varying numbers of kernels.

Number Fault classification accuracy (%) with the noise-
of kernels adding signal at the different SNR

20 dB 15 dB 10 dB 5 dB 0 dB -5 dB -10 dB
1 99.70 99.69 99.67 99.48 99.46 99.41 99.10
5 99.76 99.73 99.71 99.58 99.54 99.46 99.14
10 99.78 99.75 99.73 99.62 99.58 99.50 99.29
20 99.80 99.77 99.76 99.68 99.60 99.57 99.35
30 99.83 99.80 99.78 99.72 99.65 99.60 99.54

Tab. 8: Time for prediction a data image, the number of learnable parameters for the proposed model with different number of
kernels.

Number Number of data images Time for prediction a The number of learnable
of kernels need to specify data image (ms) parameters

1 2400 3.339 ± 10% 50923
5 2400 3.430 ± 10% 92843
10 2400 4.163 ± 10% 148483
20 2400 5.265 ± 10% 270563
30 2400 6.336 ± 10% 407043

Fig. 7: Classification accuracy curves of proposed algorithm
with different kernel sizes.

selected as in Table 3. We change the size of kernels
such as 3 x 3, 5 x 5, 7 x 7, 9 x 9, and 11 x 11 to
evaluate the classification accuracy. The dataset used
for the experiment corresponds to working condition
B in Table 2 with added Gaussian noise at different
SNR values. The fault classification accuracy curves
corresponding to kernel sizes are shown in Fig. 7. The
results of bearing fault classification accuracy and the
classification time for one image, the number of learn-
able parameters of the proposed MI-CNN model with
different kernel sizes are depicted in Tables 9 and 10,
respectively.

Fig. 7 and Table 10 indicate that in the proposed
CNN model across signals with varying SNRs, enlarg-
ing the filter size not only reduces fault classification
accuracy but also marginally prolongs execution time.

Fig. 8: Fault classification accuracy comparison of the proposed
MI-CNN model with IF+CNN+k-NN for noise-added
signals.

For instance, considering a signal with 10 dB SNR, as
the filter size increases from 3 x 3 to 5 x 5, 7 x 7, 9 x 9,
and 11 x 11, the fault classification accuracy decreases
slightly from 99.71% to 99.62%, 99.48%, 99.05%, and
98.92%, respectively. Consequently, the filter size of
the proposed model in this study is chosen to be 3 x
3 due to its higher accuracy and faster execution time
compared to other kernel sizes.

The optimal parameter set and structure for the pro-
posed MI-CNN model which are outlined in Table 11
and Table 12 are selected according to the experimen-
tal results from 4.1 to 4.4. With such a lightweight
structure, our proposed model has the potential for
deployment in resource-limited systems, such as Rasp-
berry Pi or Jetson Nano.
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Tab. 9: Fault classification accuracy with varying kernel sizes.

Kernel size/ Fault classification accuracy (%) with noise-
convolutional adding signal at different SNR values

layers 20 dB 15 dB 10 dB 5 dB 0 dB -5 dB -10 dB
3 × 3 99.76 99.73 99.71 99.58 99.54 99.46 99.14
5 × 5 99.68 99.64 99.62 99.52 99.48 99.42 99.12
7 × 7 99.54 99.50 99.48 99.29 99.10 99.00 98.89
9 × 9 99.29 99.15 99.05 99.00 98.88 98.67 98.54

11 × 11 99.10 98.99 98.92 98.88 98.67 98.50 98.45

Tab. 10: Time for prediction a data image, the number of learnable parameters for the proposed model with different kernel sizes.

Kernel size Number of data images Time for prediction a The number of learnable
need to specify data image (ms) parameters

3 × 3 2400 3.430 ± 10% 92843
5 × 5 2400 3.564 ± 10% 96203
7 × 7 2400 3.719 ± 10% 101243
9 × 9 2400 3.873 ± 10% 107963

11 × 11 2400 3.973 ± 10% 116363

Tab. 11: Parameters of the proposed MI-CNN model.

Parameter Value
Input image size (L1 × L2) 80 × 80

Minibatch size 128
InitialLearnRate 0.001

LearnRateDropFactor 0.1
LearnRateDropPeriod 20

ValidationPatience 5
L2Regularization 1e-10

Epoch 10
Number of kernels in 5
convolutional layers

Kernel size in convolutional layers 3×3
Optimizer Adam

Number of convolutional layers 5

4.5. Comparison of bearing fault
classification accuracy the
proposed MI-CNN model with
other MI-CNN

In this experiment, we compare the classification ac-
curacy of the proposed MI-CNN model with IF-CNN
[12] when input data is raw signals and their spec-
tral portrait. Then, we change the input data to be
the estimated signals and their spectral portrait. The
dataset used for the experiment corresponds to work-
ing condition B in Table 2 with added Gaussian noise.
The classification accuracy of motor bearing faults of
the proposed CNN model and IF+CNN+k-NN [12] are
depicted in Table 13 and Fig. 8.

According to Table 13 and Table 14, bearing fault
classification accuracy of both the proposed MI-CNN

model and the IF-CNN model with input data is
both estimated motor current signals and their FFT
is higher than that model with input data is both raw
motor current signals and their FFT and the basic
CNN model with raw motor current signal for all SNR
values. However, applying the Kalman filter in the
preprocessing stage introduces a slight delay (0.21 ms)
compared to not using it. Despite the additional com-
putational complexity, the Kalman filter enables the
MI-CNN model to achieve significantly higher accu-
racy in bearing fault classification even though with low
SNR signal (-10 dB, -5 dB, and 0 dB). Therefore, the
use of the Kalman filter offers a favorable trade-off be-
tween classification accuracy and computational com-
plexity. The basic CNN performs bearing fault classi-
fication based on raw motor current signals, allowing
it to execute faster than the MI-CNN and IF+CNN
models. However, it provides significantly lower clas-
sification accuracy. Despite obtaining the high clas-
sification accuracy, employing Kalman filter and FFT
for preprocessing combined with the prposed MI-CNN
model makes the prediction time slower than IF-CNN
model and basic CNN model as shown in Table 14.

4.6. Evaluating the performance of
the proposed CNN model
against other studies

In this experiment, several different methods, including
the information fusion method [12], wavelet CNN-SVM
[13], and current Bi-Spectrum and CNN [14], were im-
plemented alongside the suggested solution with the
same dataset to evaluate the effectiveness of the recom-
mended solution. The dataset of bearing-fault samples
used for performance comparison consists of original
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Tab. 12: Structure of the proposed MI-CNN model.

Layer Block Kernel size/number Input Size Output Size
CL1 CNRM 1 3 × 3/5 80 × 80 80 × 80
PL1 CNRM 1 2 × 2/5 80 × 80 40 × 40
CL2 CNRM 2 3 × 3/5 40 × 40 40 × 40
PL2 CNRM 2 2 × 2/5 40 × 40 20 × 20
CL3 CNRM 3 3 × 3/5 20 × 20 20 × 20
PL3 CNRM 3 2 × 2/5 20 × 20 10 × 10
CL4 CNRM 4 3 × 3/5 10 × 10 10 × 10
PL4 CNRM 4 2 × 2/5 10 × 10 5 × 5
CL5 CNRM 5 3 × 3/5 5 × 5 5 × 5
CL6 CNRM 6 3 × 3/5 80 × 80 80 × 80
PL6 CNRM 6 2 × 2/5 80 × 80 40 × 40
CL7 CNRM 7 3 × 3/5 40 × 40 40 × 40
PL7 CNRM 7 2 × 2/5 40 × 40 20 × 20
CL8 CNRM 8 3 × 3/5 20 × 20 20 × 20
PL8 CNRM 8 2 × 2/5 20 × 20 10 × 10
CL9 CNRM 9 3 × 3/5 10 × 10 10 × 10
PL9 CNRM 9 2 × 2/5 10 × 10 5 × 5
CL10 CNRM 10 3 × 3/5 5 × 5 5 × 5
FC1 5 × 5 5 × 5 200
FC2 400 400 100
FC3 100 100 3

Tab. 13: Comparison of bearing fault classification accuracy of proposed CNN model and IF-CNN model.

Method Fault classification accuracy (%) with noise-adding
signal at different SNR values

20 dB 15 dB 10 dB 5 dB 0 dB -5 dB -10 dB
Input Data: Raw motor current signals and their FFT

Proposed MI-CNN 92.34 82.46 74.32 65.96 56.18 50.47 48.83
IF+CNN [12] 83.65 76.22 70.34 62.70 52.46 45.82 41.15

Input Data: Estimated motor current signals and their FFT
Proposed MI-CNN 99.76 99.73 99.71 99.58 99.54 99.46 99.14

IF+CNN [12] 95.54 93.28 84.17 77.75 73.18 72.62 71.40
Input Data: Raw motor current signals (Phase-1)

Basic CNN 78.20 71.20 67.30 58.20 51.30 43.70 40.35

data from Table 1, with noise-added signals at seven
different SNR values of 20 dB, 15 dB, 10 dB, 5 dB,
0 dB, -5 dB, -10 dB. The fault classification accuracy
curves corresponding to different methods with noise-
added signals are depicted in Fig. 9. Table 15 presents
the accuracy of various algorithms with both noise-free
signals and noise-added signals. From Fig. 9 and Ta-
ble 15, it is observed that with noise-free signal, the
fault classification accuracy of the proposed method is
99.88%, which is only slightly higher than that of the
wavelet CNN and SVM method, which achieves an ac-
curacy of 99.32%.

In scenarios involving noise-added signals, the accu-
racy of all methods in Table 15 decreases as the SNR
decreases. However, the accuracy of the proposed CNN
model does not decrease significantly even for signals
with low SNR. In contrast, the accuracy of other meth-

ods remains high only when the experiment’s signals
have high SNR values (10 to 15 dB). For low SNR sig-
nals (-10 to 0 dB), the accuracy of the published meth-
ods falls short of requirements due to ineffective pre-
processing techniques in noisy environments. Among
the methods listed in Table 15, apart from our pro-
posed method with high accuracy, the classification ac-
curacy of method [13] surpasses that of the remaining
methods because it employs soft and hard threshold
wavelet filters with fixed thresholds to eliminate the
noise. However, this method has a limitation: when
a small threshold level is utilized, removal is effective
only for signals with high SNR (10 to 20 dB), resulting
in classification accuracy exceeding 80%. Conversely,
for signals with low SNR (-10 dB to 5 dB), the clas-
sification accuracy of this method is low because a
small threshold level fails to filter out noise, while a
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Tab. 14: Performance comparison of the proposed CNN model and IF-CNN model in terms of time for prediction a data image
and the number of learnable parameters.

Method Preprocessing time (ms) Time for The number
Kalman filter FFT prediction a of learnable

data image (ms) parameters
Input Data: Raw motor current signals and their FFT

MI-CNN 0 0.15 3.430 ± 10% 92843
IF+CNN [12] 0 0.15 1.501 ± 10% 23296

Input Data: Estimated motor current signals and their FFT
MI-CNN 0.21 0.15 3.430 ± 10% 92843

IF+CNN [12] 0.21 0.15 1.501 ± 10% 23296
Input Data: Raw motor current signals (Phase-1)

Basic CNN 0 0 1.120 ± 10% 26223

Tab. 15: Comparison of the fault classification accuracy (%) of the proposed method and other methods with working condition
B.

Solution Noise-free Fault classification accuracy (%) with
signal noise-added signal at different SNR values

20 dB 15 dB 10 dB 5 dB 0 dB -5 dB -10 dB
ECS + FFT + Proposed 99.88 99.76 99.73 99.71 99.58 99.54 99.46 99.14
MI-CNN (This paper)
Raw signal + IF+CNN 96.13 82.90 77.22 72.03 64.00 52.02 48.62 46.48

+k-NN [12]
Raw signal + IF 96.13 83.50 77.40 75.50 66.02 56.10 52.70 48.30

+CNN+ SVM [12]
Raw signal (Phase-1) 91.02 78.20 71.20 67.30 58.20 51.30 43.70 40.35

+ basic CNN
Wavelet + CNN 99.32 93.70 85.88 80.33 72.12 62.36 56.72 50.22

+ SVM [13]
Bi-Spectrum + CNN [14] 82.12 79.00 74.86 69.48 62.20 52.60 45.17 41.60

large threshold level causes loss of useful fault infor-
mation. Thus, although it effectively removes noise,
it results in the information loss. Due to the absence
of noise elimination techniques in the information fu-
sion method [12] and Bi-Spectrum and CNN methods
[14], the classification accuracy is not notably higher
than that of CNN model with raw signals. By utiliz-
ing the Kalman filtering algorithm to eliminate noise
in the signal preprocessing stage and constructing an
enhanced CNN model to learn signal features in both
time and frequency domains during the feature extrac-
tion stage, the proposed method achieves nearly perfect
accuracy (99.88%) with noise-free signals and approxi-
mately 99% accuracy with noise-added signals. Despite
achieving very high classification accuracy, applying
the trained model in practical applications faces sig-
nificant challenges due to variations in real operational
environments. Therefore, transfer learning should be
used to retrain the pretrained model before deploying
it in real applications.

5. Conclusion

The MI-CNN model based on the estimated motor cur-
rent signals and their spectral portrait was used in this
paper to present a novel bearing fault diagnosis tech-
nique. The proposed method incorporates the Kalman
filtering algorithm to estimate the true status of motor
current signals and eliminate associated noise. Sub-
sequently, the ECSs are converted to frequency do-
main using the FFT technique. These ECSs and their
FFT signals are then inputted into the proposed CNN
model, enabling feature extraction from MCSs in both
the time and frequency domains. Consequently, the
classification accuracy is significantly enhanced, even
for signals with low SNR values. Experimental results
demonstrate that the proposed method achieves out-
standing accuracies in bearing fault diagnosis under
varying SNRs, surpassing other algorithms that an-
alyze signals solely in the time or frequency domain
and then employ CNN or CNN models combined with
SVM or k-NN for training and classification. In addi-
tion, the parameters of the proposed CNN model are
optimally selected through numerous experiments to
evaluate fault classification accuracy when modifying
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Fig. 9: Fault classification accuracy comparison of the proposed
method with the other methods in case of noise-added
signals.

parameters such as initial learning rate, number and
size of kernels in each convolution layer, and length
of input data image. In our future research, we will
test the proposed algorithm using transfer learning on
a broader range of motors and bearings under diverse
working conditions.
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